Potęga o wykładniku wymiernym m przez n
- \left.\mleft.27\mright.\right.^{\mleft.\frac{\textcolor{#005FD4}{2}}{\textcolor{#E94D00}{3}}\mright.}=\left.\mleft.\left(\sqrt[{\textcolor{#E94D00}{3}}]{27}\right)\mright.\right.^{\mleft.\textcolor{#005FD4}{2}\mright.}=\left.\mleft.3\mright.\right.^{\mleft.\textcolor{#005FD4}{2}\mright.}=9 2723 = (3√27)2 = 32 = 9
- \left.\mleft.121\mright.\right.^{\mleft.\frac{\textcolor{#005FD4}{3}}{\textcolor{#E94D00}{2}}\mright.}=\sqrt[{\textcolor{#E94D00}{2}}]{\left.\mleft.121\mright.\right.^{\mleft.\textcolor{#005FD4}{3}\mright.}}=\left.\mleft.\left(\sqrt[{\textcolor{#E94D00}{2}}]{121}\right)\mright.\right.^{\mleft.\textcolor{#005FD4}{3}\mright.}= 12132 = 2√1213 = (2√121)3 =
=\left.\mleft.11\mright.\right.^{\mleft.\textcolor{#005FD4}{3}\mright.}=1331 = 113 = 1331 - \left.\mleft.243\mright.\right.^{\mleft.\frac{\textcolor{#005FD4}{3}}{\textcolor{#E94D00}{5}}\mright.}=\left.\mleft.\left(\sqrt[{\textcolor{#E94D00}{5}}]{243}\right)\mright.\right.^{\mleft.\textcolor{#005FD4}{3}\mright.}=\left.\mleft.3\mright.\right.^{\mleft.\textcolor{#005FD4}{3}\mright.}=27 24335 = (5√243)3 = 33 = 27
- \left.\mleft.13\mright.\right.^{\mleft.\frac{\textcolor{#005FD4}{3}}{\textcolor{#E94D00}{2}}\mright.}=\sqrt[{\textcolor{#E94D00}{2}}]{\left.\mleft.13\mright.\right.^{\mleft.\textcolor{#005FD4}{3}\mright.}}=\sqrt[{2}]{\left.\mleft.13\mright.\right.^{\mleft.2\mright.}\cdot 13}= 1332 = 2√133 = 2√132 ⋅ 13 =
=13\sqrt[{\textcolor{#E94D00}{2}}]{13} = 132√13 - \left.\mleft.a\mright.\right.^{\mleft.\frac{\textcolor{#005FD4}{\operatorname{m}}}{\textcolor{#E94D00}{n}}\mright.}=\sqrt[{\textcolor{#E94D00}{n}}]{\left.\mleft.a\mright.\right.^{\mleft.\textcolor{#005FD4}{\operatorname{m}}\mright.}}=\left.\mleft.\left(\sqrt[{\textcolor{#E94D00}{n}}]{a}\right)\mright.\right.^{\mleft.\textcolor{#005FD4}{\operatorname{m}}\mright.} amn = n√am = (n√a)m , gdy a\left.\right.{{\fontfamily{ams}\geqslant \left.\right.}}0 a ⩾ 0
- Wyznaczanie potęgi o wykładniku \frac{\operatorname{m}}{n} mn to obliczanie pierwiastka stopnia n n z potęgi o wykładniku \operatorname{m} m .
Dla Ucznia nauka zdalna liceum nauka zdalna portal
3:44

Dla Ucznia nauka liceum nauka zdalna portal edukacja technikum Nowa Era sprawdzian fiszki quizy nauka zdalna
Dla Ucznia nauka liceum nauka zdalna portal edukacja technikum Nowa Era
3:44
Dla Ucznia nauka liceum nauka zdalna portal edukacja
21:37
Dla Ucznia nauka liceum nauka zdalna portal technikum Nowa Era sprawdzian fiszki